Международный опыт21.12.2022
Использование цифровых технологий для мониторинга и прогнозирования состояния активов по производству возобновляемой энергии
Майк Редер, доктор, основатель и генеральный директор/технический директор ANNEA
Марсель Френцель, основатель и финансовый директор/директор по стратегическому планированию ANNEA
Казахстан стремится модернизировать свою нынешнюю энергетическую инфраструктуру, сделать ее более экологически чистой и эффективной. Это позволит стране отказаться от зависимости от внутренних ресурсов газа, нефти и угля по мере продвижения к своей цели по обеспечению 50% производства энергии за счет возобновляемых источников к 2050 году. Параллельно будут возникать возможности, которые появятся при эксплуатации и обслуживании этих возобновляемых источников энергии. Ниже мы рассмотрим различные цифровые решения, доступные в настоящее время на рынке, которые позволяют производителям экологически чистой энергии, в частности производителям энергии ветра, предотвращать чрезвычайные ситуации, обслуживать и ремонтировать свои активы наиболее эффективными из возможных способов.
ОТРАСЛЕВАЯ ИНФОРМАЦИЯ
Индустрия возобновляемых источников энергии сталкивается с различными проблемами, такими как конкуренция с традиционными источниками энергии по стоимости из-за высоких затрат на эксплуатацию и техническое обслуживание (ЭиТО). Поскольку возобновляемые источники энергии стали более конкурентоспособными по сравнению с традиционными источниками, конкуренция между операторами возобновляемых источников энергии усилилась. При правильной стратегии цифровые технологии помогают противостоять вызовам ЭиТО, дают операторам возобновляемых источников энергии конкурентные преимущества и увеличивают их вклад в достижение углеродной нейтральности.
Сектор добился успехов в своем подходе к техническому обслуживанию машин, отойдя от традиционной практики «наработка на отказ с последующим проведением технического обслуживания», которая включает в себя «ремонт после отказа». В настоящее время многие операторы используют стратегию профилактического обслуживания, которая вместо этого отдает предпочтение периодическому плановому техническому обслуживанию и ремонтным работам. Также используется прогнозное техническое обслуживание. Прогнозное техническое обслуживание, как следует из названия, предполагает знание того, когда актив или компонент выйдет из строя, как это произойдет и что будет основной причиной отказа. Поднимаясь на другой уровень, при предписывающем техническом обслуживании турбина сообщает оператору, как избежать прогнозируемого отказа.
В совокупности эти стратегии не позволяют владельцам ветряных турбин, операторам и поставщикам услуг по техническому обслуживанию без необходимости тратить ресурсы на техническое обслуживание своих активов.
Основываясь на оценках европейских рынков, таких как Германия, Великобритания и Дания, затраты на эксплуатацию и техническое обслуживание оцениваются в пределах от 1,2 до 1,5 евро за кВт ч произведенной энергии ветра в течение всего срока службы турбины. Это приводит к 20-30% от полной приведенной стоимости электроэнергии. На рынках США затраты на ЭиТО обычно ниже (оцениваются в 0,01 доллара за кВтч).
Экономия затрат на техническое обслуживание и рабочую силу может быть значительной. Данные из США и Европы свидетельствуют о том, что доля ремонта и технического обслуживания составляет от 46% до 57% от общих затрат на ЭиТО. Сокращение этой доли на 20% позволило бы ежегодно экономить более 11 000 долларов на турбине мощностью 2,5 МВт и около 34 000 долларов на турбине мощностью 7,5 МВт. Ограничение расходов на ЭиТО - первоочередная задача для сектора ветроэнергетики. В настоящее время, имея доступ к огромным объемам данных, операторы ветроэлектростанций могут использовать машинное обучение для преобразования недостаточно используемых данных датчиков в более низкие общие затраты на эксплуатацию турбин.
Сокращение расходов на ЭиТО зависит от выявленных вариантов использования, имеющихся возможностей и разработанного в результате решения. Например, компании, ориентированные исключительно на искусственный интеллект, обычно ожидают снижения затрат ЭиТО на 3-5%. Компании, которые сочетают отраслевые знания, машинное обучение и моделирование надежности, видят, что этот показатель возрастает до 30-50%.
В дополнение к этому, с приходом цифровизации, промышленного интернета вещей (IIoT) и искусственного интеллекта (AI) все больше компаний стремятся извлечь выгоду изданных своих активов. Это способствует будущему, в котором компании смогут использовать прогнозные и предписывающие стратегии технического обслуживания. Чтобы сделать это возможным, решения должны быть удобными для пользователя инструментами, использующими передовые технологии, такие как цифровые двойники.
ТЕХНОЛОГИЯ ЦИФРОВОГО ДВОЙНИКА
Цифровой двойник-это цифровое представление физического объекта или системы, основанное на данных, которые излучаются одним и тем же физическим объектом или системой. Технология цифровых двойников оказывает огромное влияние на процессы разработки продуктов, связанные с инженерными знаниями. Цифровые двойники в основном используются для прогнозирования различных результатов в различных сценариях. В результате технология создает большую ценность для предприятий, которые находят ей хорошее применение.
Большинство современных объектов возобновляемой энергетики оснащены SCADA-системами, генерирующими огромное количество информации, которую обычно можно получить бесплатно без каких-либо дополнительных затрат. Платформы технического обслуживания могут использовать эти уже существующие датчики и источники данных для передачи данных в цифровой двойник, создавая таким образом цифровую копию актива, которую можно удаленно использовать для анализа и прогнозирования. Это одна из самых сильных сторон цифровизации операций технического обслуживания, поскольку она снижает влияние незапланированных отключений. Цифровые двойники в итоге помогают конечным пользователям лучше прогнозировать и, следовательно, предотвращать будущие сбои, значительно повышая производительность.
Одним из способов, с помощью которых разработчики технического обслуживания используют цифровых двойников, является разработка комплексных информационных панелей. Эти информационные панели визуализируют данные и могут похвастаться несколькими модулями, призванными вывести деятельность в области возобновляемых источников энергии на новый уровень.
Комплексные решения, которые в настоящее время представлены на рынке, предлагают различные модули на IIoT-платформах. Клиенты могут выбрать, какие модули соответствуют их потребностям, и подписаться на них за ежемесячную плату (ПО как услуга - SaaS).
Эта плата обычно зависит от требований клиента, функций и продолжительности забронированного плана обслуживания. Ниже мы рассмотрим два ключевых примера решений, которые стремятся предложить платформы технического обслуживания.
ПРОГНОЗНОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ
Модуль прогнозного технического обслуживания сосредоточен на прогнозировании отказов. Это решение обычно предоставляет подробную информацию об активах и их компонентах, состоянии работоспособности, оставшемся сроке службы, производительности и условиях эксплуатации. В этом модуле информация часто разделена на три уровня детализации, чтобы клиенты могли легко получить доступ к подробностям технического обслуживания по мере необходимости.
Например, цель первого уровня - предоставить высокоуровневый обзор всех ветроэлектростанций, которые клиенты подключили к своей платформе технического обслуживания. На этом уровне активы ветроэлектростанций отображают ключевые показатели эффективности, прогнозируемые сбои и неисправности в режиме реального времени. Второй уровень обычно предлагает более подробный просмотр, позволяя пользователю приблизить данные об активе. В этом режиме отображения информация о состоянии работоспособности турбин, оставшемся сроке службы, производительности и условиях эксплуатации должна быть доступна в любой момент времени. Последний слой будет направлен на то, чтобы обеспечить углубленный, низкоуровневый обзор одного из основных компонентов. Он демонстрирует текущее и будущее состояние работоспособности, первопричи- нулюбых текущих или будущих неисправностей и полезную информацию по эксплуатации и техническому обслуживанию, которая позволяет клиенту разрешить любую ситуацию, которая могла возникнуть.
Такие модули прогнозирования отказов используют автоматизированный механизм прогнозирования. Эти ядра представляют собой сложное программное приложение, способное прогнозировать отказы ветряных турбин. Некоторые рыночные решения делают это за год до того, как они действительно возникнут. Этот модуль обычно разрабатывается в сочетании с индексом работоспособности для обогащения данных, который демонстрирует общую эксплуатационную эффективность компонентов турбины. Кроме того, усовершенствованные цифровые двойники обеспечивают подробную оценку оставшегося срока службы турбин и рекомендуемых действий по техническому обслуживанию. Эти действия обычно становятся видимыми через различные слои панели мониторинга, а также в виде объединенного обзора.
ИСПОЛЬЗОВАНИЕ ЭФФЕКТИВНОСТИ
Обнаружение недостатков должно быть второй целью решений по эксплуатации и техническому обслуживанию, поскольку устранение таких проблем значительно повышает эффективность. ANNEA может предложить обширную информацию о различных аспектах работы турбины, например, определить место наибольших потерь мощности и причины таких потерь.
Опять же такой сложный модуль лучше всего доставлять, разделив его на несколько слоев, чтобы он мог легко удовлетворять потребности пользователя. Например, первый уровень позволяет в режиме реального времени просматривать агрегированное представление целостной деятельности по снижению производительности на уровне ветроэлектростанции с учетом компоновки ветроэлектростанции и влияния спутной струи. Эта информация дает общее, но полезное представление о производстве электроэнергии, потерях мощности, обнаруженном снижении производительности и его причине. Кроме того, в нем содержатся практические рекомендации о том, как повысить производительность, и дается представление о состоянии ветряной турбины, связанном с производительностью. Второй уровень обычно предоставляет обзор недостаточной производительности турбины, подчеркивая взаимосвязь между потерями энергии, потерей дохода и общими потерями энергии. Клиенты могут оценить эффективность турбины и затраты, связанные с недостаточной производительностью и неэффекти вностью.
Платформы технического обслуживания также способны осуществлять мониторинг компонентов турбины для выявления недостаточной производительности и предоставления рекомендаций. Именно тогда модули оценки низкой производительности, управляемые данными, обнаруживают первопричину и предоставляют рекомендации о том, как наилучшим образом устранить проблему. Следуя рекомендациям, клиенты могут повысить эффективность своих активов за счет улучшения производства энергии и минимизации потерь доходов.
ВКЛАД В ПЛАН «ЗЕЛЕНОЙ» ЭНЕРГЕТИКИ КАЗАХСТАНА
В соответствии с целью Ассоциации Qazaq Green, объединяющей игроков в области возобновляемых источников энергии по созданию благоприятных условий для развития отрасли, платформы технического обслуживания стремятся предложить членам ассоциации свой опыт и уникальные решения для дальнейшего продвижения их бизнеса.
Сочетание технологии цифрового двойника с различными методами моделирования позволяет производителям экологически чистой энергии прогнозировать сбои на 12 месяцев вперед на уровне компонентов с точностью 99,9% без установки дополнительного оборудования. При правильной стратегии, передовых технологиях от разработчиков технического обслуживания и их коллег из ветроэнергетических компаний мы можем преодолеть проблемы технического обслуживания, часто связанные с возобновляемыми источниками энергии, и внести свой вклад в достижение нулевого уровня выбросов.
Платформы, подобные платформе ANNEA, https:// annea.ai/, используют прогнозное техническое обслуживание, машинное обучение и моделирование надежности, чтобы повысить надежность, свести к минимуму незапланированные простои и продлить срок службы при одновременной оптимизации производительности.
Свяжитесь с представителем ANNEA, чтобы понять, как можно использовать ваши системы технического обслуживания для максимального повышения эффективности: www.annea.ai
2024 год признан самым жарким в истории наблюдений
Китай ввел в эксплуатацию крупнейшую в мире ГАЭС
Установленная мощность солнечных панелей в Германии достигла 100 ГВт
К 2030 году в сфере энергетики Казахстана появится 41 тысяча рабочих мест
Узбекистан расширяет поддержку возобновляемой энергетики
Китай в пустыне строит Великую солнечную стену
На долю ВИЭ приходится 48% производства электроэнергии в ЕС – Eurelectric
ЕБРР кредитует Сербию на €105 млн для декарбонизации централизованного теплоснабжения
Системные операторы Казахстана, Азербайджана и Узбекистана дали старт проекту «Зеленый коридор»
Казахстан в 2024 году ввел новые энергетические мощности на более 700 МВт
Стратегическое партнерство: ЕАБР и Qazaq Green развивают возобновляемую энергетику в Казахстане
Ученые Satbayev University запустили производство солнечных панелей
Ветряную электростанцию на 1 гигаватт построят в Костанайской области
ЕС выделяет еще €2,7 млрд доходов от СТВ на проекты декарбонизации и чистой энергетики
Новая батарея увеличила дальность полета дрона на 40%
В Казахстане изменились требования к участникам аукциона по проектам строительства ВИЭ
Казахстан получил €6 млн на модернизацию эффективности электросетей и сокращение потерь электроэнергии
5-7 марта 2025 года в Италии пройдет выставка KEY - The Energy Transition Expo
Глобальная конференция МЭА по энергоэффективности пройдет в Брюсселе в июне 2025 года
Минэнерго: В Казахстане до конца года введут восемь новых объектов ВИЭ