Новости мира

Новости мира10.06.2024

Как перерабатываются солнечные панели

QAZAQ GREEN.  Солнечная энергия сегодня — самый быстрорастущий возобновляемый источник энергии в мире. Снижение стоимости добычи сделало её доступной для огромного количества людей и привело к стремительному росту её использования. Однако есть проблема: по мере развития солнечной энергетики возникает глобальная задача по обращению с отходами. Что произойдет с миллионами солнечных панелей, когда срок их службы закончится? Международное агентство по возобновляемой энергии прогнозирует, что через 30 лет, солнечные отходы составят около 80 млн тонн. Тяжелые металлы, содержащиеся в фотоэлементах, без правильной утилизации будут выделяться в окружающую среду, что приведет к неблагоприятным последствиям для экологии, сообщает VC.

Переработка кремниевых панелей

Часть компаний ремонтируют и повторно используют солнечные панели, которые потеряли эффективность. Повторное использование — это самый простой и дешевый способ «переработать» панели — он требует наименьшей обработки и наиболее экономически эффективен.

Около 90% коммерческих солнечных панелей используют кремний в качестве полупроводника, который преобразует свет в электричество. Тонкие полоски металла, обычно серебра, пересекают поверхность кремниевых кристаллов в каждой ячейке и передают электричество в медную проводку панели.

Переработка солнечных панелей на основе кремния начинается с разборки самого продукта на отдельные части из алюминия и стекла. Из-за высокой температуры герметизирующий пластик испаряется, оставляя кремниевые элементы готовыми к дальнейшей обработке. Поддерживающая технология гарантирует, что даже этот пластик не будет потрачен впустую, поэтому он повторно используется в качестве источника тепла для дальнейшей термической обработки. Частицы кремния, называемые пластинами, вытравливают с помощью кислоты.

В настоящее время от 85% до 95% материалов солнечной панели можно выделить и переработать. Некоторые поврежденные или преждевременно вышедшие из строя панели можно отремонтировать и перепродать на вторичном рынке. Стекло, медь, свинец, алюминий и опасные полупроводниковые материалы могут быть утилизированы посредством сочетания механических и химических процессов, оказывающих относительно небольшое воздействие на окружающую среду.

Утилизация тонкопленочных панелей

•             В тонкопленочных солнечных панелях используют опасные для экологии и людей металлы, поэтому их переработка важнее и сложнее.

•             Панель измельчается механически. Отдельные элементы не должны превышать 4-5 миллиметров в поперечнике.

•             Измельченные частицы помещают в сепаратор, где под действием центробежной силы происходит разделение на жидкие и твердые фракции.

•             Под действием воды происходит выщелачивание, полупроводниковый слой отделяется от стекла и пластика.

•             Жидкий раствор осаждается и очищается для выделения полупроводниковых материалов.

•             Твердые отходы очищают при помощи вибротехнологий и промывают.

•             Практически все выделенные материалы подлежат вторичному использованию.

 Рынок переработки

Подход к регенерации/переработке не только имеет экологический смысл, но и стоит больших денег. В самых последних отчетах стоимость глобального выхода извлеченного сырья из солнечных панелей оценивается в $450 млн к 2030 году и превышает $15 млрд к 2050 году.

Китай, США, Япония, страны ЕС активно инвестируют в исследования и разработки по переработке солнечных панелей. На сегодняшний день различают два вида переработки PV-модулей — грубую и тонкую. При первой подразумевается извлечение основных материалов модуля — алюминия, меди, стекла, а вот пластмасса просто сжигается. При тонкой переработке возможно извлечение всех химических элементов.

В состав солнечных модулей входит сырье, которое можно использовать вторично. В процентном соотношении панель из кристаллического кремния — это 76% стекла, 10% полимерных материалов, 8% алюминия, 5% кремниевых полупроводников, 1% меди, менее 0,1% серебра, олова и свинца. В тонкопленочных модуляx доля стекла гораздо выше — 89% (CIGS) и 97% (CdTe).

18.06.2024
Ford делает деньги из солнца: компания нашла способ закрыть товарные автомобили от палящего зноя и сэкономить
18.06.2024
Ветровая и солнечная энергии в Японии: что прогнозируют экономисты до 2060 года
18.06.2024
Как пыль из Сахары влияет на солнечную энергетику?
17.06.2024
Две компании победили в аукционе на строительство ВЭС на 100 МВт в области Абай
17.06.2024
Инвестиции в £300 млн: в Великобритании построят первое в мире хранилище энергии на сжиженном воздухе
17.06.2024
Установленная в 1992 году солнечная панель сохранила 79,5% своей первоначальной мощности
14.06.2024
Итог аукциона: в Костанайской области построят ВЭС мощностью 200 МВт
14.06.2024
Генерировать электричество из цемента? Ученые изобрели новый способ для снабжения дома электричеством
14.06.2024
«KEGOC» и «Eni» планируют подключить первую гибридную электростанцию в Мангистауской области к НЭС Казахстана
13.06.2024
Аукционные торги на строительство ВЭС стартовали с рекордным снижением цены в Казахстане
13.06.2024
«Малую» электроэнергию – на продажу
13.06.2024
В Китае установили первый в мире морской 18-МВт ветрогенератор — 260 м в диаметре
13.06.2024
Кыргызстан и IFC подписали соглашение о солнечных электростанциях
12.06.2024
Дом, где родился Томас Эдисон, теперь питается от солнечной энергии
12.06.2024
Казахстан, Кыргызстан и Узбекистан создадут совместную компанию для строительства Камбаратинской ГЭС
12.06.2024
Рекордно низкая цена установлена по итогам аукциона на строительство малых ГЭС в Казахстане
12.06.2024
«Дочка» Samsung намерена реализовать проекты по ВИЭ и хранению энергии в Казахстане
11.06.2024
На 76% снижена цена на аукционе по отбору проектов на строительство малых ГЭС
11.06.2024
«Солнце, ветер, место и инвестиции»: Эксперты на Qazaq Green Fest рассказали о преимуществах Казахстана для развития зеленой энергетики
11.06.2024
Rystad Energy: Китай к концу 2025 года будет производить более 200 000 тонн в год зеленого водорода